
Intel Architecture Software Developer’s Manual 39-11

A

A 39

39.1 AAA—ASCII Adjust After Addition

Description
Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL register
is the implied source and destination operand for this instruction. The AAA instruction is only
useful when it follows an ADD instruction that adds (binary addition) two unpacked BCD values
and stores a byte result in the AL register. The AAA instruction then adjusts the contents of the AL
register to contain the correct 1-digit unpacked BCD result.

If the addition produces a decimal carry, the AH register is incremented by 1, and the CF and AF
flags are set. If there was no decimal carry, the CF and AF flags are cleared and the AH register is
unchanged. In either case, bits 4 through 7 of the AL register are cleared to 0.

Operation
IF ((AL AND 0FH) > 9) OR (AF = 1)

THEN
AL ← (AL + 6);
AH ← AH + 1;
AF ← 1;
CF ← 1;

ELSE
AF ← 0;
CF ← 0;

FI;
AL ← AL AND 0FH;

Flags Affected
The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)
None.

39.2 AAD—ASCII Adjust AX Before Division

Opcode Instruction Description

37 AAA ASCII adjust AL after addition

Opcode Instruction Description

D5 0A AAD ASCII adjust AX before division

D5 ib (No mnemonic) Adjust AX before division to number base imm8

39-12 Intel Architecture Software Developer’s Manual

A

Description
Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most-
significant digit in the AH register) so that a division operation performed on the result will yield a
correct unpacked BCD value. The AAD instruction is only useful when it precedes a DIV
instruction that divides (binary division) the adjusted value in the AX register by an unpacked BCD
value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then clears the AH
register to 00H. The value in the AX register is then equal to the binary equivalent of the original
unpacked two-digit (base 10) number in registers AH and AL.

The generalized version of this instruction allows adjustment of two unpacked digits of any
number base (see the “Operation” section below), by setting the imm8 byte to the selected number
base (for example, 08H for octal, 0AH for decimal, or 0CH for base 12 numbers). The AAD
mnemonic is interpreted by all assemblers to mean adjust ASCII (base 10) values. To adjust values
in another number base, the instruction must be hand coded in machine code (D5 imm8).

Operation
tempAL ← AL;
tempAH ← AH;
AL ← (tempAL + (tempAH ∗ imm8)) AND FFH; (* imm8 is set to 0AH for the AAD mnemonic *)
AH ← 0

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected
The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)
None.

39.3 AAM—ASCII Adjust AX After Multiply

Description
Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked
(base 10) BCD values. The AX register is the implied source and destination operand for this
instruction. The AAM instruction is only useful when it follows an MUL instruction that multiplies
(binary multiplication) two unpacked BCD values and stores a word result in the AX register. The
AAM instruction then adjusts the contents of the AX register to contain the correct 2-digit
unpacked (base 10) BCD result.

The generalized version of this instruction allows adjustment of the contents of the AX to create
two unpacked digits of any number base (see the “Operation” section below). Here, the imm8 byte
is set to the selected number base (for example, 08H for octal, 0AH for decimal, or 0CH for base 12

Opcode Instruction Description

D4 0A AAM ASCII adjust AX after multiply

D4 ib (No mnemonic) Adjust AX after multiply to number base imm8

Intel Architecture Software Developer’s Manual 39-13

A

numbers). The AAM mnemonic is interpreted by all assemblers to mean adjust to ASCII (base 10)
values. To adjust to values in another number base, the instruction must be hand coded in machine
code (D4 imm8).

Operation
tempAL ← AL;
AH ← tempAL / imm8; (* imm8 is set to 0AH for the AAD mnemonic *)
AL ← tempAL MOD imm8;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected
The SF, ZF, and PF flags are set according to the result. The OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)
None with the default immediate value of 0AH. If, however, an immediate value of 0 is used, it will
cause a #DE (divide error) exception.

39.4 AAS—ASCII Adjust AL After Subtraction

Description
Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD result.
The AL register is the implied source and destination operand for this instruction. The AAS
instruction is only useful when it follows a SUB instruction that subtracts (binary subtraction) one
unpacked BCD value from another and stores a byte result in the AL register. The AAA instruction
then adjusts the contents of the AL register to contain the correct 1-digit unpacked BCD result.

If the subtraction produced a decimal carry, the AH register is decremented by 1, and the CF and
AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH register
is unchanged. In either case, the AL register is left with its top nibble set to 0.

Operation
IF ((AL AND 0FH) > 9) OR (AF = 1)
THEN

AL ← AL – 6;
AH ← AH – 1;
AF ← 1;
CF ← 1;

ELSE
CF ← 0;
AF ← 0;

FI;
AL ← AL AND 0FH;

Flags Affected
The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are cleared to 0. The
OF, SF, ZF, and PF flags are undefined.

Opcode Instruction Description

3F AAS ASCII adjust AL after subtraction

39-14 Intel Architecture Software Developer’s Manual

A

Exceptions (All Operating Modes)
None.

39.5 ADC—Add with Carry

Description
Adds the destination operand (first operand), the source operand (second operand), and the carry
(CF) flag and stores the result in the destination operand. The destination operand can be a register
or a memory location; the source operand can be an immediate, a register, or a memory location.
(However, two memory operands cannot be used in one instruction.) The state of the CF flag
represents a carry from a previous addition. When an immediate value is used as an operand, it is
sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry in
the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which an
ADD instruction is followed by an ADC instruction.

Operation
DEST ← DEST + SRC + CF;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

Opcode Instruction Description

14 ib ADC AL,imm8 Add with carry imm8 to AL

15 iw ADC AX,imm16 Add with carry imm16 to AX

15 id ADC EAX,imm32 Add with carry imm32 to EAX

80 /2 ib ADC r/m8,imm8 Add with carry imm8 to r/m8

81 /2 iw ADC r/m16,imm16 Add with carry imm16 to r/m16

81 /2 id ADC r/m32,imm32 Add with CF imm32 to r/m32

83 /2 ib ADC r/m16,imm8 Add with CF sign-extended imm8 to r/m16

83 /2 ib ADC r/m32,imm8 Add with CF sign-extended imm8 into r/m32

10 /r ADC r/m8,r8 Add with carry byte register to r/m8

11 /r ADC r/m16,r16 Add with carry r16 to r/m16

11 /r ADC r/m32,r32 Add with CF r32 to r/m32

12 /r ADC r8,r/m8 Add with carry r/m8 to byte register

13 /r ADC r16,r/m16 Add with carry r/m16 to r16

13 /r ADC r32,r/m32 Add with CF r/m32 to r32

Intel Architecture Software Developer’s Manual 39-15

A

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

39.6 ADD—Add

Opcode Instruction Description

04 ib ADD AL,imm8 Add imm8 to AL

05 iw ADD AX,imm16 Add imm16 to AX

05 id ADD EAX,imm32 Add imm32 to EAX

80 /0 ib ADD r/m8,imm8 Add imm8 to r/m8

81 /0 iw ADD r/m16,imm16 Add imm16 to r/m16

81 /0 id ADD r/m32,imm32 Add imm32 to r/m32

83 /0 ib ADD r/m16,imm8 Add sign-extended imm8 to r/m16

83 /0 ib ADD r/m32,imm8 Add sign-extended imm8 to r/m32

00 /r ADD r/m8,r8 Add r8 to r/m8

01 /r ADD r/m16,r16 Add r16 to r/m16

01 /r ADD r/m32,r32 Add r32 to r/m32

02 /r ADD r8,r/m8 Add r/m8 to r8

03 /r ADD r16,r/m16 Add r/m16 to r16

03 /r ADD r32,r/m32 Add r/m32 to r32

39-16 Intel Architecture Software Developer’s Manual

A

Description
Adds the first operand (destination operand) and the second operand (source operand) and stores
the result in the destination operand. The destination operand can be a register or a memory
location; the source operand can be an immediate, a register, or a memory location. (However, two
memory operands cannot be used in one instruction.) When an immediate value is used as an
operand, it is sign-extended to the length of the destination operand format.

The ADD instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry in
the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

Operation
DEST ← DEST + SRC;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Intel Architecture Software Developer’s Manual 39-17

A

39.7 AND—Logical AND

Description
Performs a bitwise AND operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a register or a memory location.
(However, two memory operands cannot be used in one instruction.) Each bit of the result of the
AND instruction is a 1 if both corresponding bits of the operands are 1; otherwise, it becomes a 0.

Operation
DEST ← DEST AND SRC;

Flags Affected
The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state
of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Opcode Instruction Description

24 ib AND AL,imm8 AL AND imm8

25 iw AND AX,imm16 AX AND imm16

25 id AND EAX,imm32 EAX AND imm32

80 /4 ib AND r/m8,imm8 r/m8 AND imm8

81 /4 iw AND r/m16,imm16 r/m16 AND imm16

81 /4 id AND r/m32,imm32 r/m32 AND imm32

83 /4 ib AND r/m16,imm8 r/m16 AND imm8 (sign-extended)

83 /4 ib AND r/m32,imm8 r/m32 AND imm8 (sign-extended)

20 /r AND r/m8,r8 r/m8 AND r8

21 /r AND r/m16,r16 r/m16 AND r16

21 /r AND r/m32,r32 r/m32 AND r32

22 /r AND r8,r/m8 r8 AND r/m8

23 /r AND r16,r/m16 r16 AND r/m16

23 /r AND r32,r/m32 r32 AND r/m32

39-18 Intel Architecture Software Developer’s Manual

A

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

39.8 ARPL—Adjust RPL Field of Segment Selector

Description
Compares the RPL fields of two segment selectors. The first operand (the destination operand)
contains one segment selector and the second operand (source operand) contains the other. (The
RPL field is located in bits 0 and 1 of each operand.) If the RPL field of the destination operand is
less than the RPL field of the source operand, the ZF flag is set and the RPL field of the destination
operand is increased to match that of the source operand. Otherwise, the ZF flag is cleared and no
change is made to the destination operand. (The destination operand can be a word register or a
memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it can also be
used by applications). It is generally used to adjust the RPL of a segment selector that has been
passed to the operating system by an application program to match the privilege level of the
application program. Here the segment selector passed to the operating system is placed in the
destination operand and segment selector for the application program’s code segment is placed in
the source operand. (The RPL field in the source operand represents the privilege level of the
application program.) Execution of the ARPL instruction then insures that the RPL of the segment
selector received by the operating system is no lower (does not have a higher privilege) than the
privilege level of the application program. (The segment selector for the application program’s
code segment can be read from the stack following a procedure call.)

See “Checking Caller Access Privileges” in Chapter 4 of the Intel Architecture Software
Developer’s Manual, Volume 3, for more information about the use of this instruction.

Operation
IF DEST(RPL) < SRC(RPL)
THEN

ZF ← 1;
DEST(RPL) ← SRC(RPL);

ELSE
ZF ← 0;

FI;

Opcode Instruction Description

63 /r ARPL r/m16,r16 Adjust RPL of r/m16 to not less than RPL of r16

Intel Architecture Software Developer’s Manual 39-19

A

Flags Affected
The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source
operand; otherwise, is cleared to 0.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The ARPL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual-8086 mode.

39-20 Intel Architecture Software Developer’s Manual

A

